3.57 \(\int \frac{x^4}{\sqrt{a x+b x^3}} \, dx\)

Optimal. Leaf size=140 \[ \frac{5 a^{7/4} \sqrt{x} \left (\sqrt{a}+\sqrt{b} x\right ) \sqrt{\frac{a+b x^2}{\left (\sqrt{a}+\sqrt{b} x\right )^2}} \text{EllipticF}\left (2 \tan ^{-1}\left (\frac{\sqrt [4]{b} \sqrt{x}}{\sqrt [4]{a}}\right ),\frac{1}{2}\right )}{21 b^{9/4} \sqrt{a x+b x^3}}-\frac{10 a \sqrt{a x+b x^3}}{21 b^2}+\frac{2 x^2 \sqrt{a x+b x^3}}{7 b} \]

[Out]

(-10*a*Sqrt[a*x + b*x^3])/(21*b^2) + (2*x^2*Sqrt[a*x + b*x^3])/(7*b) + (5*a^(7/4)*Sqrt[x]*(Sqrt[a] + Sqrt[b]*x
)*Sqrt[(a + b*x^2)/(Sqrt[a] + Sqrt[b]*x)^2]*EllipticF[2*ArcTan[(b^(1/4)*Sqrt[x])/a^(1/4)], 1/2])/(21*b^(9/4)*S
qrt[a*x + b*x^3])

________________________________________________________________________________________

Rubi [A]  time = 0.13725, antiderivative size = 140, normalized size of antiderivative = 1., number of steps used = 5, number of rules used = 4, integrand size = 17, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.235, Rules used = {2024, 2011, 329, 220} \[ \frac{5 a^{7/4} \sqrt{x} \left (\sqrt{a}+\sqrt{b} x\right ) \sqrt{\frac{a+b x^2}{\left (\sqrt{a}+\sqrt{b} x\right )^2}} F\left (2 \tan ^{-1}\left (\frac{\sqrt [4]{b} \sqrt{x}}{\sqrt [4]{a}}\right )|\frac{1}{2}\right )}{21 b^{9/4} \sqrt{a x+b x^3}}-\frac{10 a \sqrt{a x+b x^3}}{21 b^2}+\frac{2 x^2 \sqrt{a x+b x^3}}{7 b} \]

Antiderivative was successfully verified.

[In]

Int[x^4/Sqrt[a*x + b*x^3],x]

[Out]

(-10*a*Sqrt[a*x + b*x^3])/(21*b^2) + (2*x^2*Sqrt[a*x + b*x^3])/(7*b) + (5*a^(7/4)*Sqrt[x]*(Sqrt[a] + Sqrt[b]*x
)*Sqrt[(a + b*x^2)/(Sqrt[a] + Sqrt[b]*x)^2]*EllipticF[2*ArcTan[(b^(1/4)*Sqrt[x])/a^(1/4)], 1/2])/(21*b^(9/4)*S
qrt[a*x + b*x^3])

Rule 2024

Int[((c_.)*(x_))^(m_.)*((a_.)*(x_)^(j_.) + (b_.)*(x_)^(n_.))^(p_), x_Symbol] :> Simp[(c^(n - 1)*(c*x)^(m - n +
 1)*(a*x^j + b*x^n)^(p + 1))/(b*(m + n*p + 1)), x] - Dist[(a*c^(n - j)*(m + j*p - n + j + 1))/(b*(m + n*p + 1)
), Int[(c*x)^(m - (n - j))*(a*x^j + b*x^n)^p, x], x] /; FreeQ[{a, b, c, m, p}, x] &&  !IntegerQ[p] && LtQ[0, j
, n] && (IntegersQ[j, n] || GtQ[c, 0]) && GtQ[m + j*p + 1 - n + j, 0] && NeQ[m + n*p + 1, 0]

Rule 2011

Int[((a_.)*(x_)^(j_.) + (b_.)*(x_)^(n_.))^(p_), x_Symbol] :> Dist[(a*x^j + b*x^n)^FracPart[p]/(x^(j*FracPart[p
])*(a + b*x^(n - j))^FracPart[p]), Int[x^(j*p)*(a + b*x^(n - j))^p, x], x] /; FreeQ[{a, b, j, n, p}, x] &&  !I
ntegerQ[p] && NeQ[n, j] && PosQ[n - j]

Rule 329

Int[((c_.)*(x_))^(m_)*((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> With[{k = Denominator[m]}, Dist[k/c, Subst[I
nt[x^(k*(m + 1) - 1)*(a + (b*x^(k*n))/c^n)^p, x], x, (c*x)^(1/k)], x]] /; FreeQ[{a, b, c, p}, x] && IGtQ[n, 0]
 && FractionQ[m] && IntBinomialQ[a, b, c, n, m, p, x]

Rule 220

Int[1/Sqrt[(a_) + (b_.)*(x_)^4], x_Symbol] :> With[{q = Rt[b/a, 4]}, Simp[((1 + q^2*x^2)*Sqrt[(a + b*x^4)/(a*(
1 + q^2*x^2)^2)]*EllipticF[2*ArcTan[q*x], 1/2])/(2*q*Sqrt[a + b*x^4]), x]] /; FreeQ[{a, b}, x] && PosQ[b/a]

Rubi steps

\begin{align*} \int \frac{x^4}{\sqrt{a x+b x^3}} \, dx &=\frac{2 x^2 \sqrt{a x+b x^3}}{7 b}-\frac{(5 a) \int \frac{x^2}{\sqrt{a x+b x^3}} \, dx}{7 b}\\ &=-\frac{10 a \sqrt{a x+b x^3}}{21 b^2}+\frac{2 x^2 \sqrt{a x+b x^3}}{7 b}+\frac{\left (5 a^2\right ) \int \frac{1}{\sqrt{a x+b x^3}} \, dx}{21 b^2}\\ &=-\frac{10 a \sqrt{a x+b x^3}}{21 b^2}+\frac{2 x^2 \sqrt{a x+b x^3}}{7 b}+\frac{\left (5 a^2 \sqrt{x} \sqrt{a+b x^2}\right ) \int \frac{1}{\sqrt{x} \sqrt{a+b x^2}} \, dx}{21 b^2 \sqrt{a x+b x^3}}\\ &=-\frac{10 a \sqrt{a x+b x^3}}{21 b^2}+\frac{2 x^2 \sqrt{a x+b x^3}}{7 b}+\frac{\left (10 a^2 \sqrt{x} \sqrt{a+b x^2}\right ) \operatorname{Subst}\left (\int \frac{1}{\sqrt{a+b x^4}} \, dx,x,\sqrt{x}\right )}{21 b^2 \sqrt{a x+b x^3}}\\ &=-\frac{10 a \sqrt{a x+b x^3}}{21 b^2}+\frac{2 x^2 \sqrt{a x+b x^3}}{7 b}+\frac{5 a^{7/4} \sqrt{x} \left (\sqrt{a}+\sqrt{b} x\right ) \sqrt{\frac{a+b x^2}{\left (\sqrt{a}+\sqrt{b} x\right )^2}} F\left (2 \tan ^{-1}\left (\frac{\sqrt [4]{b} \sqrt{x}}{\sqrt [4]{a}}\right )|\frac{1}{2}\right )}{21 b^{9/4} \sqrt{a x+b x^3}}\\ \end{align*}

Mathematica [C]  time = 0.0316225, size = 80, normalized size = 0.57 \[ \frac{2 x \left (5 a^2 \sqrt{\frac{b x^2}{a}+1} \, _2F_1\left (\frac{1}{4},\frac{1}{2};\frac{5}{4};-\frac{b x^2}{a}\right )-5 a^2-2 a b x^2+3 b^2 x^4\right )}{21 b^2 \sqrt{x \left (a+b x^2\right )}} \]

Antiderivative was successfully verified.

[In]

Integrate[x^4/Sqrt[a*x + b*x^3],x]

[Out]

(2*x*(-5*a^2 - 2*a*b*x^2 + 3*b^2*x^4 + 5*a^2*Sqrt[1 + (b*x^2)/a]*Hypergeometric2F1[1/4, 1/2, 5/4, -((b*x^2)/a)
]))/(21*b^2*Sqrt[x*(a + b*x^2)])

________________________________________________________________________________________

Maple [A]  time = 0.013, size = 149, normalized size = 1.1 \begin{align*}{\frac{2\,{x}^{2}}{7\,b}\sqrt{b{x}^{3}+ax}}-{\frac{10\,a}{21\,{b}^{2}}\sqrt{b{x}^{3}+ax}}+{\frac{5\,{a}^{2}}{21\,{b}^{3}}\sqrt{-ab}\sqrt{{b \left ( x+{\frac{1}{b}\sqrt{-ab}} \right ){\frac{1}{\sqrt{-ab}}}}}\sqrt{-2\,{\frac{b}{\sqrt{-ab}} \left ( x-{\frac{\sqrt{-ab}}{b}} \right ) }}\sqrt{-{bx{\frac{1}{\sqrt{-ab}}}}}{\it EllipticF} \left ( \sqrt{{b \left ( x+{\frac{1}{b}\sqrt{-ab}} \right ){\frac{1}{\sqrt{-ab}}}}},{\frac{\sqrt{2}}{2}} \right ){\frac{1}{\sqrt{b{x}^{3}+ax}}}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(x^4/(b*x^3+a*x)^(1/2),x)

[Out]

2/7*x^2*(b*x^3+a*x)^(1/2)/b-10/21*a*(b*x^3+a*x)^(1/2)/b^2+5/21*a^2/b^3*(-a*b)^(1/2)*((x+1/b*(-a*b)^(1/2))*b/(-
a*b)^(1/2))^(1/2)*(-2*(x-1/b*(-a*b)^(1/2))*b/(-a*b)^(1/2))^(1/2)*(-x*b/(-a*b)^(1/2))^(1/2)/(b*x^3+a*x)^(1/2)*E
llipticF(((x+1/b*(-a*b)^(1/2))*b/(-a*b)^(1/2))^(1/2),1/2*2^(1/2))

________________________________________________________________________________________

Maxima [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{x^{4}}{\sqrt{b x^{3} + a x}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x^4/(b*x^3+a*x)^(1/2),x, algorithm="maxima")

[Out]

integrate(x^4/sqrt(b*x^3 + a*x), x)

________________________________________________________________________________________

Fricas [F]  time = 0., size = 0, normalized size = 0. \begin{align*}{\rm integral}\left (\frac{\sqrt{b x^{3} + a x} x^{3}}{b x^{2} + a}, x\right ) \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x^4/(b*x^3+a*x)^(1/2),x, algorithm="fricas")

[Out]

integral(sqrt(b*x^3 + a*x)*x^3/(b*x^2 + a), x)

________________________________________________________________________________________

Sympy [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{x^{4}}{\sqrt{x \left (a + b x^{2}\right )}}\, dx \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x**4/(b*x**3+a*x)**(1/2),x)

[Out]

Integral(x**4/sqrt(x*(a + b*x**2)), x)

________________________________________________________________________________________

Giac [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{x^{4}}{\sqrt{b x^{3} + a x}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x^4/(b*x^3+a*x)^(1/2),x, algorithm="giac")

[Out]

integrate(x^4/sqrt(b*x^3 + a*x), x)